Floating Point Guidelines

Guidelines

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

Guideline 1 - Example

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

This is false
Example:
double $a=0.1$;
if (10*a = $=1.0$)
std:: cout << "no output\n";

Guideline 1 - Example

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

This is false

Example:

double $a=0.1$;
if (10*a = = 1.0)
std:: cout << "no output\n";
Problem:
0.1 not representable

Guidelines

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

Guideline 2:
«Avoid the addition of numbers of extremely different sizes!»

Guideline 2 - Example

Guideline 2:
«Avoid the addition of numbers of extremely different sizes!»

```
Example:
float a = 16777216 + 1;
if (a == 16777216)
    std::cout << "This is output ... \n";
```


Guideline 2 - Example

Guideline 2:
«Avoid the addition of numbers of extremely different sizes!»

```
Example:
float a = 16777216 + 1;
if (a == 16777216)
    std::cout << "This is output ... \n";
```


Guidelines

Guideline 1:

«Do not test two floating point numbers for equality, if at least one of them was rounded before.»

Guideline 2:

«Avoid the addition of numbers of extremely different sizes!»

Guideline 3:
«Avoid the subtraction of numbers of similar sizes!»

Guideline 3 - Example

Guideline 3:
«Avoid the subtraction of numbers of similar sizes!»

```
Example:
float volume_exact = 35.828125;
float volume_approx = 35.328125;
float diff = volume_exact
    - volume_approx;
```


Guideline 3 - Example

Guideline 3:
«Avoid the subtraction of numbers of similar sizes!»

